If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-15t-448=0
a = 1; b = -15; c = -448;
Δ = b2-4ac
Δ = -152-4·1·(-448)
Δ = 2017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{2017}}{2*1}=\frac{15-\sqrt{2017}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{2017}}{2*1}=\frac{15+\sqrt{2017}}{2} $
| -10x-2x-7x= | | 10-10×10+10=a | | 1.6/2=6.4/x | | 3(x-10)=-(-5x+2) | | 6(4x-6)=4(9-3x) | | x-12=x-2(3-2x) | | 2y×(1/24)=1 | | 6k+9=1 | | x/10+x/4=7 | | 5(10-3x)=106-8x+4(11-4x) | | (a-5)6=105 | | (72/x)+3=72/(x-4) | | 5n+34=-2(-1-7n | | x^2+12x+2x+24=0 | | u/3−–18=24 | | X/4x+8=16 | | x^2+7x+26=0 | | 4/7y-4=1/7(y+14) | | 3=|x|-6 | | -20=2x-20 | | 5b-22=3b+22 | | 5h=h+160 | | 2^x+¹=64 | | 7x-2=10x-19 | | p=10000/(0.05)^4 | | 8(w-3)=5(w+6) | | 4(x+5)+3(x+4)=186. | | x³+x²+x-3=0 | | x×72=9 | | |k/8|-8=-7 | | X+9/3=2(x=1)/4 | | 13-(5+6y-2(y+5))=-4(5y-6)-8(y-1)-22y+18) |